III.A.15 Combined Theoretical and Experimental Investigation and Design of H₂S Tolerant Anode for Solid Oxide Fuel Cells ## **Objectives** - Investigate the mechanism for deterioration of solid oxide fuel cell (SOFC) anodes operating at the H₂: H₂S: CO ratios found in coal syngas. - Molecular modeling of the anode materials interacting with chemical species. - Validate the theoretical model with experimental data ## **Accomplishments** - Established the detrimental influence of H₂S on H₂ oxidation at anode material from quantum chemistry calculations; binding energy for H₂ was reduced from -80.1 kcal/mol to -21.6 kcal/mol in the presence of H₂S gas molecules. - Molecular dynamics calculations confirm that H₂S gas molecules slow the diffusion of H₂ molecules towards anode material. - Analyzed the impact of CO on the mixture of H₂ and H₂S; CO decreased the diffusion coefficient of H₂S. #### Introduction Coal syngas is the gas produced from the burning of coal and has a good amount of hydrogen along with other chemical species as such as CO and $\rm CO_2$. However, coal syngas also contains $\rm H_2S$ at high concentrations between 0.5-5% depending on where the coal is mined [1]. Of the different types of fuel cell, the solid oxide fuel cell (SOFC) is the most viable option to use coal syngas as its fuel supply because it operates at 850-1000°C. It is also known that SOFCs can handle Gerardine Botte (Primary Contact), Madhivanan Muthuvel, Andres Marquez Department of Chemical and Biomolecular Engineering, Ohio University 183 Stocker Center Athens, OH 45701 Phone: (740) 593-9670; Fax: (740) 593-0873 E-mail: botte@ohio.edu DOE Project Manager: Lane Wilson Phone: (304) 285-1336 E-mail: Lane.Wilson@netl.doe.gov CO and CO₂ as contaminants in the H₂ supply because of its high operating temperature. But the presence of H₂S in the fuel stream will deteriorate the anode material. Most of the research has been focused on developing new anode materials for SOFCs rather than studying the cause of the anode deterioration due to H₂S. In this project, we propose to use a systematic approach to understanding the effect of H₂S from syngas on the anode materials (Ni-YSZ, Ni-CeO₂-YSZ) with molecular modeling computations, and to perform experiments to validate the models. ## **Approach** In this study, molecular modeling is used to understand the interaction of $\rm H_2S$ with anode materials (Ni-YSZ, Ni-CeO₂-YSZ). Molecular modeling consists of first principle quantum chemistry (QC) calculations using Gaussian 03 software to optimize the structure of each compound and the systems consisting of anode and different chemical species. Physical properties, such as diffusion coefficient of the chemical species and their interactions with anode material, are calculated using molecular dynamics (MD) simulations with Cerius2 (v 4.8) software. Finally, an experimental set-up will be constructed to perform SOFC experiments with different anode materials and validate the mathematical models. #### **Results** Molecular modeling of different SOFC anode material chemical species was studied. First, the electrolyte of SOFC, yttria-stabilized zirconia (YSZ), was optimized by QC calculations using Gaussian 03 software. NiO was added to the optimized YSZ structure to form Ni-YSZ, the anode material. All the possible systems consisting of Ni-YSZ (anode), H₂, H₂S and CO were constructed and quantum calculations were performed. The binding energies for each system are shown in Table 1. The binding energy for each system has a negative value which means the oxidation of the components on the Ni-YSZ surface is thermodynamically feasible. In case of single molecules, oxidation of H₂ is favored more than oxidation of H₂S and CO because the binding energy for H₂ (-80.1 kcal/mol) is lower than H₂S (-21.4 kcal/mol) and CO (-23.9 kcal/mol). The binding energy for the system where H_2S is combined with H_2 (-21.6 kcal/mol) is higher than the system with only H_2 , which means H_2 oxidation on the Ni-YSZ surface is obstructed by the presence of H_2S molecules. But when CO is mixed with H_2 , the binding **TABLE 1.** Binding Energies for Various Combinations of Gas Components | Systems | Binding Energy (kcal/mol) | | | |-----------------------|---------------------------|--|--| | H ₂ | -80.1 | | | | H ₂ S | -21.4 | | | | CO | -23.9 | | | | $H_2 + H_2S$ | -21.6 | | | | H ₂ + CO | -155.5 | | | | H ₂ S + CO | -134.6 | | | energy (-155.5 kcal/mol) is far less than the binding energy for the $\rm CO+H_2S$ system (-134.6 kcal/mol), which suggests that oxidation of both CO and $\rm H_2$ on the surface of Ni-YSZ anode is more favored than the $\rm CO+H_2S$ system. The computational chemistry model was extended and MD calculations were performed to understand the interactions between the atoms in the anode and the chemical species (H₂, H₂S and CO) in its environment. The radial distribution function (RDF) was used to determine the packing and orientation of the chemical species and anode material. The RDF plot gives the interaction of each chemical species with different atoms in the anode as a function of distance from the surface of the anode. One of the RDF plots for the H₂ system at 25°C showed that H₂ has a higher affinity for the Ni atom in the anode than other atoms (Y, Zr and O), which means H₂ oxidizes at Ni sites in the Ni-YSZ anode. Figure 1 shows the RDF plot for the Ni-H₂ pair at 850°C in the presence of H₂S and CO molecules. The pure H₂ system has the highest peak value, which decreases with the addition of H₂S and CO to the mixture. This proves again that oxidation of H₂ at Ni sites are slowed down by the presence of H₂S and CO molecules. In addition, one can observe the position of the Ni-S pair from the H₂/H₂S system, which is farther away from the anode surface as compared to the Ni-H₂ pair. This confirms that H₂ is more likely to get oxidized at Ni sites than the H₂S molecule. Interaction of H₂S with different atoms in the anode and H₂ molecules at 850°C is shown in Figure 2. The RDF plot shows that S forms a pair with Ni and H₂ rather than with any other atoms. The Ni-S pair is slightly farther away from the anode than the Ni-H₂ pair. Other than the RDF plot, MD calculations can be used to find the diffusion coefficient of each gas molecule. In Table 2 the diffusion coefficients for $\rm H_2$, $\rm H_2S$ and CO in various systems are listed. Diffusivity for pure $\rm H_2$ was found to be 1.35 x $\rm 10^{-4}$ cm²/s, but when $\rm H_2S$ **FIGURE 1.** RDF Plot for Ni-H $_2$ Pair at 850°C with the Presence of H $_2$ S and CO FIGURE 2. Interaction of $\rm H_2S$ Molecule with Ni, Y, 0, Zr Atoms and $\rm H_2$ Molecule at 850° gas was mixed with H_2 , the diffusion coefficient of H_2 was lowered by 20% to 1 x 10^{-4} cm²/s. This observation agrees with QC calculations that in a H_2+H_2S mixture, oxidation of H_2 takes place at a slower pace due to transport limitations. Now with the addition of CO to H_2 gas, the H_2 diffusivity has been dropped to 5 x 10^{-6} cm²/s, which is 96% lower than the pure H_2 system. In the case of a $H_2+H_2S(2\%)+CO(2\%)$ mixture, CO slows down both the diffusion of H_2 (9 x 10^{-6} cm²/s) and also H_2S (2 x 10^{-9} cm²/s). **TABLE 2.** Diffusivities of the Gas Components at 850° C for Different Systems | Systems | H ₂
Diffusivity
(cm²/s) | H ₂ S
Diffusivity
(cm²/s) | CO
Diffusivity
(cm²/s) | |-------------------------------|--|--|------------------------------| | H ₂ | 1.35 x 10 ⁻⁴ | _ | _ | | $H_2 + H_2 S (2\%)$ | 1 x 10 ⁻⁴ | 1 x 10 ⁻⁵ | - | | H ₂ + CO (2%) | 5 x 10 ⁻⁶ | - | 3 x 10 ⁻⁷ | | $H_2 + H_2S (1\%) + CO (1\%)$ | 2 x 10 ⁻⁵ | 8 x 10 ⁻⁹ | 6 x 10 ⁻⁹ | | $H_2 + H_2S (2\%) + CO (2\%)$ | 9 x 10 ⁻⁶ | 2 x 10 ⁻⁹ | 6 x 10 ⁻⁹ | ## **Conclusions and Future Directions** - Quantum chemistry calculation proves oxidation of pure H₂ is more thermodynamically favored on the Ni-YSZ surface than pure H₂S and CO. - RDF plots for H₂ indicate that H₂ has a greater affinity for the Ni atom than any other atoms in the anode material. - Diffusion of H₂ was slowed down in the presence of H₂S and CO, but when all the three gases are mixed, CO reduces the diffusion coefficient of H₂S. - In the future, we would like to include N₂ and H₂O (moisture) atoms to the anode environment and perform QC and MD calculations. - Perform molecular modeling with another anode material – Ni-CeO₂-YSZ. - Design and construct a SOFC experimental set-up to verify the theoretical model. #### **FY 2006 Publications/Presentations** - 1. "Theoretical Investigation of NiYSZ in the Presence of H_2S " Marquez, A., De Abreu, Y., and Botte, G. G., *Electrochemical and Solid-State Letters*, 9 (3) A163-A166 (2006). - **2.** "Theoretical Investigations of Solid Oxide Fuel Cell Anode Materials" AIChE 2005 Annual Meeting, October 30th November 4th, 2005, Cincinnati, OH. - 3. "Theoretical Investigations of Solid Oxide Fuel Cell Anode Materials in the Presence of $\rm H_2/H_2S/CO$ " The $\rm 31^{st}$ International Technical Conference on Coal Utilization & Fuel Systems, The Clearwater Coal Conference, May 21-25, 2006, Clearwater, FL. #### References 1. G. Y. Lai, *High Temperature Corrosion of Engineering Alloys*, ASM International, Materials Park, OH (1990) p. 117.